CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.

Authors

KUNKA Antonín LACKO David ŠTOURAČ Jan DAMBORSKÝ Jiří PROKOP Zbyněk MAZURENKO Stanislav

Year of publication 2022
Type Article in Periodical
Magazine / Source Nucleic acids research
MU Faculty or unit

Faculty of Science

Citation
Web https://academic.oup.com/nar/article/50/W1/W145/6586862?login=true
Doi http://dx.doi.org/10.1093/nar/gkac378
Keywords FLUORESCENCE; CALORIMETRY; RESOLUTION; STATE
Attached files
Description The importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis. Here, we introduce CalFitter 2.0, which newly incorporates singular value decomposition (SVD) of multi-wavelength spectral datasets into the global fitting pipeline. Processed time- or temperature-evolved SVD components can now be fitted together with other experimental data types. Moreover, deconvoluted basis spectra provide spectral fingerprints of relevant macrostates populated during unfolding, which greatly enriches the information gains of the CalFitter output. The SVD analysis is fully automated in a highly interactive module, providing access to the results to users without any prior knowledge of the underlying mathematics. Additionally, a novel data uploading wizard has been implemented to facilitate rapid and easy uploading of multiple datasets. Together, the newly introduced changes significantly improve the user experience, making this software a unique, robust, and interactive platform for the analysis of protein thermal denaturation data. The webserver is freely accessible at https://loschmidt.chemi.muni.cz/calfitter.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.