Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

LIHONG M.o. POSPÍCHALOVÁ Vendula HUANG Z.Q. MURPHY S.K. PAYNE S. WANG Fan KENNEDY M. CIANCIOLO G.J. BRYJA Vítězslav PIZZO S.V. BACHELDER R.E.

Year of publication 2015
Type Article in Periodical
Magazine / Source Plos one
MU Faculty or unit

Faculty of Science

Citation
Web http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131579
Doi http://dx.doi.org/10.1371/journal.pone.0131579
Field Physiology
Keywords CHEMOTHERAPY; SURVIVAL; GENE; TRANSPORTERS; KINASE; MDR1
Description Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.